The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics.
نویسندگان
چکیده
Invariance properties of physical systems govern their behaviour: energy conservation in turbulence drives a wide distribution of energy among modes, as observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of the invariance of helicity (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, in the presence of rotation, significant differences emerge between helical and non-helical turbulent flows. We first briefly outline some of the issues such as the partition of energy and helicity among modes. Using massive numerical simulations, we then show that small-scale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami core vortices that are laminar helical vertical updraft vortices. These results point to the discovery of a small parameter besides the Rossby number, a fact that would relate the problem of rotating helical turbulence to that of critical phenomena, through the renormalization group and weak-turbulence theory. This parameter can be associated with the adimensionalized ratio of the energy to helicity flux to small scales, the three-dimensional energy cascade being weak and self-similar.
منابع مشابه
HELICITY AND PLANAR AMPLITUDES IN PION-PROTON SCATTERING AT 6.0 GeV/c
In addition to optimal conditions, invariant laws of Lorentz, parity and time reversal are imposed to find the relation between observables (spin rotation parameters) and bilinear combination of helicity amplitudes in pion-proton elastic scattering at 6.0 GeV/c. By normalizing the differential cross-section to unity, the magnitudes of helicity amplitudes and the angle between them are dete...
متن کاملSign cancellation and scaling in the vertical component of velocity and vorticity in rotating turbulence.
We study sign changes and scaling laws in the Cartesian components of the velocity and vorticity of rotating turbulence, in the helicity, and in the components of vertically averaged fields. Data for the analysis are provided by high-resolution direct numerical simulations of rotating turbulence with different forcing functions, with up to 1536(3) grid points, with Reynolds numbers between ≈110...
متن کاملNonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence
The nonlinear mean-field dynamo due to a shear-current effect in a nonhelical homogeneous turbulence with a mean velocity shear is discussed. The transport of magnetic helicity as a dynamical nonlinearity is taken into account. The shear-current effect is associated with the W×J term in the mean electromotive force, where W is the mean vorticity due to the large-scale shear motions and J is the...
متن کاملMulti-scale theory of rotating turbulence
Aims. To understand the dynamics of stellar interiors, we study the effect of rotation on turbulence. Methods. We consider turbulence induced by an arbitrary forcing and derive turbulence amplitude and turbulent transport coefficients (turbulent viscosity and diffusivity), first by using a quasi-linear theory and then by using a multi-scale renormalisation analysis. Results. With an isotropic f...
متن کاملCascade time scales for energy and helicity in homogeneous isotropic turbulence.
We extend the Kolmogorov phenomenology for the scaling of energy spectra in high-Reynolds-number turbulence, to explicitly include the effect of helicity. There exists a time scale tau(H) for helicity transfer in homogeneous, isotropic turbulence with helicity. We arrive at this time scale using the phenomenological arguments used by Kraichnan to derive the time scale tau(E) for energy transfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 368 1916 شماره
صفحات -
تاریخ انتشار 2010